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ABSTRACT 

This paper presents an efficient approach, based on many well-established soil mechanics 
principles, to evaluate the nonlinear longitudinal bridge abutment spring stiffnesses. The 
applicability of previous studies is limited because such studies are incapable of handling many 
important factors such as nonlinear soil behavior, free-field strains induced by an earthquake, and 
the difference in soil behavior under active and passive conditions. The proposed approach 
accounts for all of these factors. The procedures adopted in this approach are relatively simple, 
and emphasis has been placed on easy interpretation and on achieving consistency between design 
procedures routinely used in the static and seismic design of abutments. 

INTRODUCTION 

Seismic response of highway bridges can be significantly influenced by the behavior of the 
foundation soil that supports the abutments. Soil conditions exert a very strong influence on the 
seismic behavior of highway bridges. In the cases of skew bridges and short span bridges, the 
influence of "bridge-abutment-backfill" interaction often has a first-order effect on the overall 
dynamic response. Analytical studies, which are needed to evaluate the adequacy of designs, 
require characterization of the support at the abutments. The current procedure (e.g., AASHTO, 
1983 and CalTrans) is to specify equivalent linear spring coefficients at the deck-abutment support. 
Many field observations (e.g., downhole array measurements) and seismological data from 
earthquakes have revealed that soil exhibits nonlinear behavior in strong motion earthquakes (Yu 
et al., 1993). An excitation with a maximum acceleration, amax,  of around 0.1g is strong enough 
to require nonlinear characterization for soils. The study reported here is concerned with the 
development of a nonlinear force-displacement (or stiffness) under longitudinal loading conditions 
for use in abutment modeling. Only seat-type abutments resting on spread footing is addressed in 
this paper. 

Past studies to evaluate abutment stiffness values have been based on many assumptions that 
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are not quite realistic (Maragalds and Siddharthan, 1989; Wilson and Tan, 1990; ATC, 1978) and, 
therefore, suffer from many, often serious, limitations. For example, these methods ignore one or 
more of the following important factors: nonlinear soil behavior, earthquake induced strains (i.e., 
free-field strains), the presence of active and passive conditions and the corresponding difference 
in soil behavior under such loading, influence of wing walls, and physical abutment dimensions. 

PROPOSED METHODOLOGY 

Figure 1 shows a sketch of a displaced abutment caused by a horizontal force, PL  applied 
to the abutment. To find secant abutment stiffness, it is required to find the force required to 
cause a certain horizontal displacement (SO. The force and the displacement should be monitored 
near the top of the abutment since the abutment springs are assumed to be located at the bridge 
deck level. The movement of the abutment suggests that active and passive conditions develop in 
front and at the back of the abutment as shown in Fig. 1. At the bottom of the abutment, there 
is rotation resulting in increase and decrease in foundation pressures as shown in the figure. A 
close look at the figure suggests that, to estimate the force PL  for a given SL, one needs the 
characterization of (1) the wall movement/lateral earth pressure relationship under active and 
passive conditions, (2) the rotational resistive moment/rotation relationship, and (3) foundation-soil 
interface forces (horizontal and vertical) at the bottom of the abutment. 

By resolving forces in the vertical direction and taking moments about the center of the 
abutment base, it is possible to find the force, PL, required to cause a certain displacement, SL. 
The proposed numerical procedure results in abutment rotation, 0, and PL  as solutions after 
satisfying all of the conditions of equilibrium (force and moment). 

Lateral Wall Movement/Earth Pressure Relationship 

The earth pressure that acts on a wall vary with wall displacement. Laboratory 
measurements and finite element studies have shown that the active conditions in a soil deposit can 
be mobilized with a much lower wall movement/wall height ratio (A/h) than can the passive 
conditions. For medium sand, the A/h ratio for the passive conditions can be as much as ten times 
that needed for the active condition. Figure 2 shows a range for wall movement/lateral earth 
pressure relationships reported for medium dense sand by Clough and Duncan (1991). The top 
curve is for fully compacted soil behind a non-yielding wall, and the bottom curve is for soils with 
no compaction. The average curve shown in Fig. 2 was selected to represent the active and passive 
pressure-wall displacement relationship. 

Resistive Moment-Rotation Relationship at Abutment Base 

Using a Winkler spring representation for soil, Siddharthan et al. (1992), recently presented 
a procedure to obtain foundation resistive moment, Mb, for a rectangular spread footing (Fig. 3). 
They considered two important aspects: the foundation pressure should not exceed the ultimate 
bearing pressure and lifting off of foundation. They showed that, depending on the value of the 
vertical component of the force, Fv, the foundation could first reach ultimate bearing capacity (right 
corner) and then subsequently lift off (Case A) or vice versa (Case B). Case A occurs when Fv  .._ 
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quitB/2 in which quit  is the bearing capacity of the foundation soil. The moment/rotation 
relationship depends on the ultimate bearing pressure, quit, Fv  and the Winider spring constant, 
Kv. The Kv, which is stress-dependent, can, in turn, be evaluated from the vertical load-
displacement (Fv  versus av) as shown in Fig. 4. The Fv  versus av  relationship may be obtained 
using a modification to the procedures outlined by Schmertmann (1978). The iterative elastic 
procedure adopted to model the nonlinear soil behavior is as follows: 
(1) Divide the foundation soil layer into a number of sublayers (up to about four times the 

width of the foundation base) 
(2) For each layer, assume the initial secant shear modulus, G, to be a fraction of Gmax. Here, 

Gmax  is the maximum shear modulus at a low shear strain; and it may be computed using 
the Seed and Idriss (1970) equation 

Gmax = 218 . 8(1(2 )max(am)1/2 (1)  

(3)  

(4)  

in which (K2)max  = the constant that depends on the relative density of the soil and am  
= the mean normal stress of the layer. Here, Gmax  and am  are given in kPa and am  is 
computed using both components: the overburden and the load induced stresses. The 
average load induced stresses in the sublayer were computed using a 2:1 spread as often 
used in foundation engineering. 
From the shear strains computed for the layers, estimate the secant shear modulus, G, using 
the variation routinely used in soil dynamics problems. 
If the difference between the assumed (Step 2) and the computed shear modulus (Step 3) 
is not within a certain limit, repeat Steps 2 and 3. If convergence occurs in all sublayers, 
then the resulting settlement accounts for the nonlinear soil behavior. 

The entire nonlinear vertical load-settlement (Fv  versus (5v) curve can be obtained by increasing 
the value of Fv. The curve is limited by the ultimate bearing capacity of the foundation as shown 
in Fig. 4. 

Earthquake Induced Inertia Forces and Free-Field Strains 

The earthquake excitation shakes the bridge superstructure and also foundation and backfill 
soil surrounding the abutment. It may be argued that the strains in the surrounding soil have two 
components: free-field and strains from load applied at the abutment. This means that, since the 
soil is nonlinear, it is reasonable to expect that the abutment stiffness depends on the level of 
shaking. Since the dynamic characteristics of the superstructure and soil surrounding the abutment 
are quite different, the movement of the soil adjacent to the abutment will not be in phase with 
the bridge deck movement. When the bridge attempts to push into the abutment, there may be 
inertia forces present within the backfill and on the abutment. The analysis presented thus far 
neglects the influence of the inertia force. In fact, all of the current methods neglect the presence 
of inertia force. When inertia force is present, the maximum active and passive resistances for 
lateral movement are given by the Mononobe-Okabe equation (Seed and Whitman, 1970). Since 
the lateral earth pressure versus displacement curve adopted here is normalized, Mononobe-Okabe 
active (KAE) and passive coefficients (KpE) can be used with Fig. 2. 

Since the excitation reverses in direction very often, the horizontal inertia forces could be 
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in a direction either to the left or to the right or even nonexistent when the deck attempts to move 
into the abutment. A similar situation exists with the vertical inertia force. Under these 
circumstances, it is herein proposed to evaluate abutment stiffnesses considering many possible 
combinations. The combinations that have been considered are horizontal seismic coefficient kh  
= ± 0.5 axnax/g, the vertical seismic coefficient kv  = ± kh/2, and also kh  = Icy  = 0. Here, amax  
is the maximum horizontal acceleration on top of the soil deposit and Icv  has been assumed to be 
half of kh. The selection of values for the seismic coefficient, kh, had been based on the 
recommendation of Whitman (1991) who critically reviewed field observations in real earthquakes 
and laboratory tests. Altogether, there are five combinations; and, since the problem is nonlinear, 
it is not possible to predict beforehand which combination would yield the conservative results. 
It is believed that the cases with inertia forces and free-field strains and the case without 
earthquake excitation (kv  = kh  =0) can provide a bound for the stiffness evaluations. 

The foundation and the backfill soil mass undergo deformation to the earthquake excitation 
(free-field). The free-field strains that are present due to earthquake shaking should be 
superimposed on the load induced strains for realistic nonlinear characterization (Lain and Martin, 
1986; Buckle et al., 1987). The average free-field shear strains, 'yew  in the foundation and backfill 
soil may be obtained as a function of depth using the procedures outlined by Tokimatsu and Seed 
(1987). This approach requires widely used soil properties such as (K2)mar  and unit weight,-y and 
amax. By superimposing the yea  on the load induced shear strain (Step 3—above), it is possible to 
account for the influence of the ffee-field strain on the stiffness estimation. Since both of the shear 
strain components are on two different perpendicular axes, they should not simply be added. 
Further, when inertia forces are considered, the bearing capacity of the foundation is reduced. 
Recent research reported by Richard et al. (1993) has been used to obtain the limit to the Fv  
versus (Sv  relationship. 

APPLICATION 

To illustrate and highlight many important components of the proposed approach, many 
intermediate steps involved in the evaluation of the nonlinear stiffness of an abutment shown in 
Fig. 5 are presented. This is a medium high abutment with a height of H = 4.5m supporting a 
vertical deck load of VD  = 500 IN/m. This abutment has been designed according to the current 
design procedures (Barker et al., 1991) such that the factors of safety under static loading 
conditions against sliding, overturning, and bearing failures are more than 1.5, 2.0, and 2.0 
respectively. Tension at the heel of the abutment is also not allowed to develop. In addition, this 
abutment has factors of safety under seismic loading conditions against sliding, overturning, and 
bearing failure of more than 1.1, 1.5, and 1.5 respectively. These factors of safety are consistent 
with those recommended in various design guidelines for abutment design (e.g., Barker et al., 1991; 
Siddharthan et al., 1994). A seismic coefficient, kh  = 0.2 and Is, = 0.1, has been used in the 
pseudostatic design of the abutment. The backfill and foundation soil are assumed to have a 
friction angle of Oh  = = 35 °, and the interface friction angles at the base and on the side are 
assumed to be 21 and 15° respectively. These values are typical for medium dense sand and 
sandy silt mixtures (Barker et al., 1991). An optimization technique described by Siddharthan et 
al. (1994) was used to arrive at the abutment dimension at the base of the footing. Abutment 
dimensions (Fig. 5) and soil properties used are as follows: H = 4.5m; = 2.75m; Al  = 0.3m; 
A2  = 1.0m; A3  = 1.0m; A4  = 0.75m; A5  = 0.1m; A6  = 2.5m; C1  = . m; C2  = 1.0m; C3  = 
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4.25m; B = 3.9m; y = 18.5 kN/m3; Poissons's ratio, p = 0.3; and (K2)max  = 55. 

Figure 6 shows the vertical load-displacement (Fy  - ov) relationship obtained for this 
abutment. Two cases are shown: (1) kh  = Icv  = 0.0 and (2) kh  = 0.2 and kv  = 0.1. The limiting 
vertical load given by the bearing capacity equations with kh  = 0.2 is much smaller and is as much 
as 0.3 of the limiting vertical load when kh  = 0. The Fv-av  relationship developed for kh  = 0.2 
required a knowledge of free-field strains. The procedures adopted by Tokimatsu and Seed (1987) 
were used to estimate the average free-field shear strains. Figure 7 presents this variation. These 
strains were superimposed with the load induced strains to obtain the Fv-bv  relationship for the 
case where kh  = 0.2. It may be noted that the nonlinear behavior is present from the start and 
the ultimate bearing pressures is reached in the cases of kh  = 0.2 much sooner after the vertical 
displacement of 7mm; while, in the case of lc}, = 0.0, as much as 72mm displacement is required. 
It appears that there is no major difference between the cases kh  = 0 and kh  = 0.2 until the 
ultimate bearing resistance is reached with the kh  = 0.2 case. 

Figure 8 presents the longitudinal secant stiffness evaluated using the procedures outlined 
above. The figure depicts five cases. In all of the cases reported in the figures, it is clear that the 
stiffness drops substantially, by as much as a factor of 9, when the displacement increases from 1 
to 10mm. Such reduction in stiffness is consistent with the recent large-scale field test results 
reported by Maroney et al. (1994). In all cases, after about 20mm of movement, there is not much 
change in the stiffness. Figure 9 shows a range for the stiffnesses. The case of kh  = 0.2 and Icy  
= 0.1 always represents the upper bound (stiffer) data, while the case of kh  = Icy  = 0 represents 
the lower bound (softer) data. The highest deviation between the five cases exists at a lower 
displacement; and it can be as much as 18%. 

In design, it is often customary to select the lower abutment stiffness. This is because lower 
abutment stiffness will usually produce higher displacements for the deck and the pier and, 
therefore, lead to higher ductile demand and shear forces in the pier. However, in an extreme case 
when an iterative elastic bridge response analysis is performed, the softer springs can change the 
dynamic characteristics (period and mode shapes) and, thus, result in an unrealistic analytical 
model. Since the variations shown between the different cases are within 18%, the influence of this 
on altering the effective period of the entire bridge structure will be minimal. 
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